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1. Introduction 
 

The mechatronic design of a humanoid robot is fundamentally different from that of 
industrial robots. Industrial robots generally have to meet requirements such as mechanical 
stiffness, accuracy and high velocities. The key goal for this humanoid robot is not accuracy, 
but the ability to cooperate with humans. In order to enable a robot to interact with humans, 
high standards are set for sensors and control of its movements. The robot’s kinematic 
properties and range of movements must be adjusted to humans and their environment 
(Schäfer, 2000). 

 
1.1 The Humanoid Robot ARMAR 
The collaborative research centre 588 “Humanoid Robots – learning and cooperating multi-
modal robots” was established by the “Deutsche Forschungsgemeinschaft” (DFG) in 
Karlsruhe in May 2001. In this project, scientists from different academic fields develop 
concepts, methods, and concrete mechatronic components for a humanoid robot called 
ARMAR (see figure 1) that can share its working space with humans.  
 

 

Fig. 1. Upper body of the humanoid robot ARMAR III. 
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The long-term target is the interactive work of robots and humans to jointly accomplish 
specified tasks. For instance, a simple task like putting dishes into a dishwasher requires 
sophisticated skills in cognition and the manipulation of objects. Communication between 
robots and humans should be possible in different ways, including speech, touch, and 
gestures, thus allowing humans to interact with the robots easily and intuitively. As this is 
the main focus of the collaborative research centre, a humanoid upper body on a holonomic 
platform for locomotion has been developed. It is planned to increase the mobility of 
ARMAR by replacing the platform with legs within the next years, which will lead to 
modifications of the upper body. 

 
1.2 State of the Art and Motivation 
The focus of this paper is the design and the development process of a new wrist for the 
humanoid robot ARMAR. The wrist serves as the connection between forearm and hand. 
An implementation of the new modules is planned for the next generations of the humanoid 
robot, ARMAR IV and V. The wrist of the current version, ARMAR III, has two degrees of 
freedom (Albers et al., 2006) and its rotational axes intersect in one point. ARMAR III has the 
ability to move the wrist to the side (± 60°, adduction/abduction) as well as up and down (± 
30°, flexion/extension). This is realized by a universal joint in a compact construction. At the 
support structure of the forearm all motors for both degrees of freedom are fixed. The gear 
ratio is obtained by a ball screw in conjunction with either a timing belt or a cable. The load 
transmission is almost free from backlash. The velocity control and the angular 
measurement in the wrist are realized by encoders at the motors and by quasi-absolute 
angular sensors directly at the joint. To measure the load on the hand, a 6-axis force and 
torque sensor is fitted between the wrist and the hand. 
One of the main points of criticism on the current version of the wrist is the offset between 
the rotational axes and the flange, as shown in figure 2 (left). Due to the joint design, this 
offset distance is necessary in order to provide the desired range of motion. Also other 
wrists of humanoid robots show a similar design, see (Shadow), (Kaneko et al., 2004), (Park 
et al., 2005), (Kaneko et al., 2008). That offset is even greater due to the placement of the 6-
axis force and torque sensor. The resulting movement, a circular path performed by the 
carpus, does not appear as a humanlike motion, as illustrated in figure 2 (right). 
 

offset

offset

 

Fig. 2. Offset between the rotational axis and the hand flange at the wrist of the humanoid 
robot ARMAR III (left) and the resulting movement (right) 

 

The German Aerospace Centre DLR (Deutsches Zentrum für Luft- und Raumfahrt) has been 
working on seven degree of freedom robot arms for several years. The result of this project 
is shown in figure 3 (left). Although their work is inspired by a human arm, their goal is not 
to design humanoid robots. The wrists of the lightweight arms of the third generation 
imitate human wrist movements by a pitch-pitch combination with intersecting axes 
(kardanic). An alternative pitch-roll configuration is also utilized, mainly for applications 
using tools (Albu-Schäffer et al., 2007). Both versions have an offset comparable to the 
current wrist of ARMAR III. 
Henry J. Taylor and Philip N.P. Ibbotson designed a so called “Powered Wrist Joint” 
(Rosheim, 1989) in order to load and unload space shuttles. The concept of this wrist is 
illustrated in figure 3 (right). In a smaller version, the basic idea could be reused in 
humanoid robot’s wrist. The second degree of freedom (pitch) of the wrist is guided by a 
spherical joint. Such an assembly provides a slim design and relatively wide range of 
motion. The actuators for the second degree of freedom (yaw) are located directly at the 
joint; therefore, the drive units are quite simple. On the other hand, miniaturization seems to 
be very difficult due to the dimensions of common gears and motors. 
 

 

Fig. 3. The DLR/Kuka lightweight robot arm (Abu-Schäfer et al. 2007) (left) and concept for 
a wrist actuator (Rosheim, 1989) (right). 

 
2. New Concept 
 

2.1 Requirements and Design Goals 
In this section the system of objectives is defined. It describes all relevant objectives, their 
dependence and boundary conditions, which are necessary for the development of the 
correct object system, outgoing from the current condition to the future condition. But the 
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solution itself is no part of the system of objectives. It is permanently extended and 
concretized over the complete product lifecycle. The correct, consistently and complete 
definition of this system is the basis of the successful product development and a core 
component of the development activity (Albers et al., 2008a). Since the robot is intended to 
get in contact with humans in order to achieve various functions, it is inevitable that the 
robot is accepted by the human. The ability to move like a human is as important as a 
human-like appearance; therefore, specific demands (Asfour, 2003) on kinematics, dynamics 
and the design space must to be considered. A human wrist consists of many different 
elements and has a relatively wide range of motions. Figure 4 illustrates the different 
possible movements of the human wrist along with the corresponding reachable angular 
position of the joints (Whired, 2001). 
 

0°

a

b

c
0°

d

 

Fig. 4. Human wrist and range of motion: a = palmar flexion 70°, b = dorsal flexion 90°, c = 
radial abduction 20°, d = ulnar abduction 40° (Whired, 2001). 
 
In order to implement a human-like wrist movement, two orthogonally arranged rotational 
degrees of freedom are necessary. Both axes are orthogonal to the forearm’s axis and 
intersect in one point. The two degrees of freedom need to be put in a kinematical series. 
The requirements and design goals for a humanoid robot’s wrist can be deduced based on 
the range of motion of the human wrist. The first degree of freedom should have a ±30° 
range of motion and the second about ±90°. The wrist will be attached to the forearm’s 
structure on one side and provides the connection to the hand. It should be possible to 
disconnect the mechanical joint between the hand and wrist in a simple way in order to 
enable a modular design. To measure the load on the hand, a 6-axis force and torque sensor 
must be fitted between the wrist and the hand. The electronic cables and pneumatic tubes 
supplying power to the hand actuators are the similar to those used in the previous models 
of ARMAR (Schulz, 2003; Beck et al., 2003). The design space for the robot’s wrist is based 
on human dimensions as far as possible; therefore, one aim is to keep a sphere of 
approximately 100 mm in diameter as a boundary. At the same time, the control strategy 
aims to operate all degrees of freedom as individually as possible. 
In keeping with the standardized drive concept of most modules of the robot, electronic 
motors are used as the source for actuation. The drive units need to be dimensioned for a 
load of 3 kg. All gears are designed to be free from backlash and not self-locking. But 
friction, e.g. in case of a loss of power, leads to a slow and damped sinking of the arm 
instead of abrupt movement. That is of great importance for an interactive application of the 

 

robot in a human environment. On the other hand, stick-slip effects in the gears have been 
avoided, which is a clear benefit for the control system. 
Finally, the mechanical structures should be as light as possible in order to save energy 
during dynamic movements. A lower mass of the wrist can contribute significantly to a 
reduced energy consumption of the whole arm and has a strong influence on the gears and 
motors used for the drive units for the elbow and shoulder degrees of freedom. 

 
2.2 Concepts 
A simple reduction of the wrist’s length by only minor modifications is not possible. This is 
mainly because the current joint design in combination with the drive unit for the second 
degree of freedom does not allow a mounting of the hand in the rotational axis. Formulated 
in an abstract way, the development goal is to shift material from the intersection point to a 
different location in order to gain free space in the centre position. 
Bodies in general have six degrees of freedom in a three dimensional space: three rotational, 
and three translational. Due to design complexity, the degrees of freedom must be reduced 
for the development of a technical joint. As technical solutions in robotics usually have only 
one degree of freedom, it is necessary to combine two basic joints to implement a two degree 
of freedom joint (Brudniok 2007). An alternative solution is a spherical joint where one 
rotation is blocked, but actuators for such a design have not yet been sufficiently developed. 
As result of these basic considerations, two principle solutions were found: a universal joint 
and a kind of curved track as depicted in figure 5. 
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Fig. 5. Universal joint (left) and the principle curved track solution (right). 
 
To illustrate the decision process within the development both concepts are discussed 
shortly. The universal joint concept (figure 5 left) is very similar to the current solution 
running on ARMAR III. The first degree of freedom is provided by a rectangular frame (A). 
On that frame there is enough space for the bearings (B) of the second degree of freedom. 
Finally, the hand can be mounted on the plate (C). In contrast to the current version, the 
reduced length was achieved by taking all elements in one plane. The disadvantage is that 
the outer diameter has to be enlarged in order to provide the wide range of motion 
described in the previous section. One possible implementation of the drive units could be a 
direct connection by bowden cables providing a slim and light design of the joint itself. By 
applying this idea to the universal joint, the total length (TL) of each cable changes. Figure 6 
illustrates the parameters which are of importance for a two dimensional consideration.  
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Fig. 6. “Changing” length of the cables in different angular positions of the wrist. 
 
The total lenght can easily be calculated by the following formula, where  denotes the 
angle between the cables and the middle axis of the forearm: 
 

)cos(
2 

lbaTL   (1) 

 
As  depends on the angular position of the wrist, TL changes during each movement. That 
means that the different degrees of freedom can not be run independently as long as 
electronic motors are used as actuators. The Shadow Hand, for example, uses a different 
concept concerning the cables and their changing lengths (Shadow). 
The second basic concept depicted in figure 5 on the right side consists of a curved track 
solution for the first degree of freedom (D). As this first rotation is limited to ±30°, there is 
enough space left for the bearings of the second degree of freedom, which may be realized, 
e.g., by a simple shaft (E). This configuration allows a relatively wide range of motion and a 
high capability for a reduction of the wrist’s length. The challenges for this concept include 
finding a technical solution for the curved track, a suitable actuation and a design with a 
proper stiffness in the structures. 
Overall, both basic concepts fulfill the principle requirement of length reduction. The curved 
track method, however, has a clear advantage in terms of size in the radial direction. The 
oval outer contour also shows a better similarity to a human wrist; therefore, the curved 
track concept was selected for further development. 

 
2.3 Embodiment Design 
By an appropriate design of the shaft (see figure 5 right, named E) it is possible to gain still 
more space for the 6-axis force and torque sensor. Figure 7 illustrates a cross-section view of 
the modified shaft.  The depth of the shell corresponds with the radius of the curved track 
and enables a mounting of the hand exactly in the point where the rotational axes intersect. 
This is achieved by shifting the mechanical connection in the negative direction along the 
center axis of the forearm. 

 

6‐axis‐force and torque sensor

6‐axis‐force and torque sensor

 

Fig. 7. Basic idea for the shaft of the second DOF of the wrist integrating the force sensor. 
 
For the technical implementation of the curved track, a curved guide named HCR 
manufactured by THK was selected. Used for medical applications, THK produces ceramic 
curved guides with a radius of approximately 100 mm. From a technical standpoint it would 
have been possible to reduce the radius to meet the requirements for a humanoid robot’s 
wrist. For economic reasons, however, this was not a feasible option for the collaborative 
research centre. Therefore, a different solution was necessary.  
The curved guide was replaced by rollers in combination with a timing belt. This allowed 
the integration of two different functions in one element: the timing belt functions as part of 
the drive unit while also providing sufficient pre-load to avoid a gap between the rollers 
and the track. Figure 8 shows the basic CAD model of each design. 
 

 

Fig. 8. First technical solution by using a curved guide (left) and the alternative using a roll 
timing belt combination (right). 

 
3. Simulation 
 

3.1 Basic Geometric Considerations 
Based on the new concept an analytic model can be set up. Therefore all geometrical 
parameters based on the nature of the human body have to be adapted to the model. The 
undefined variables have to be calculated and estimated using the analytical model to get a 
reasonable set of values for the design. Using parameter optimization the best combination 
of values for a design proposal can be found in order to achieve reasonable preloads for the 
belt. 
Two main load cases were used whereas the angle of the initiated force φ can vary. Figure 9 
illustrates these two load cases. Here the calculated force F (36 N) is the substitute for all 
external loads and self-weight (Albers et al., 2006). M is the appropriate torque resulting 
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from the arm of lever and is about 3.14 Nm. To avoid a displacement of the cap the preload 
FV has to be chosen great enough 
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Fig. 9. Load case I (left) and load case II (right) in two different directions. 
 
Load case I: 
The external load F is applied in a variable angle φ towards the vertical line. The maximum 
required preload for an offset of the beveled wheels (d) of 37.5 mm is about 1 kN. When d is 
increased to 42.5 mm, the required force is less than 0.63 kN. Thus, the required force 
decreases by about 37 % when the off-set of the beveled wheels is increased by about 21 %. 
By doubling the distance from 35 mm to 70 mm, the required preload force is reduced by 
90 %. The calculated critical angle of the load φ is 36°. 
 
Load case II: 
Calculations have shown that the influence of the substituted shear force F is negligible for 
this load case. Therefore only the over-all torque M is used for the analysis. FV is dependent 
upon the angle ς and the wheel distance e. The calculated maximum force for the timing belt 
is 0.28 kN. The calculated forces are all in a reasonable range compared to the technical 
elements that can be used for the construction. Consequently the concept can be realized in a 
physical system with standard bearings and materials. 

 
3.2 First Design and Finite Element Analysis 
On the basis of the analytic results described in section 3.1, the optimal solution for the free 
geometrical parameters can be defined and in a further step be designed in a CAD system. 
An impression of the parameter optimized wrist is given in figure 10: 
 

 

Fig. 10. CAD model based on the results of the analytical considerations. 

 

In a next step the CAD model is simulated numerically using Finite Element Method (FEM) 
in order to gain further information of the system’s behavior. Especially the elasticity of the 
different structures and the resulting interaction effects are of interest. The preload force and 
the orientation of the external force were varied systematically. The primary object is to get 
values for the displacement of the cap towards the global coordinate system. ABAQUS 
(Dassault Systèmes) is the used solver for the FEM. In order to reduce the computing time, 
the CAD model must be simplified while the fundamental behavior of the system should be 
modeled as accurately as possible. The following parts are taken into account for the Finite 
Element Analysis (FEA): The cap, the beveled wheels, the idler and the timing belt are 
modeled as deformable with the ABAQUS- element type ‘C3D8I’ (except beveled wheels, 
C3D8R). Analytical rigid elements are used for the connecting wheels and the driving shaft. 
All deformable parts are simulated with isotropic material except the timing belt. Due to the 
fact that the timing belt is composed of a steel cord with polyurethane backing and teethes, 
an anisotropic material parameter is used in the model. The angle φ of the external load 
takes the value of 0° and 36° which is identified in the analytic calculation as the most 
critical. Figure 11 illustrates the result of the FEA. 
 

 

Fig. 11. Stress distribution (von-Mises criterion) for load case II. 
 
The stresses, obtained by the FEA show a reasonable distribution. The displacement of the 
cap tested with high preload forces is minimal due to the FEA. For a preload of 0.6 kN the 
displacement for load case II is about 4.4·10-3 mm and for load case I 1.39·10-2 mm. 
Compared with a preload of 1 kN the displacement doesn’t highly decrease. For load case II 
the displacement takes the value of about 4.07·10-3 mm and for load case II 1.29·10-2 mm. 
These values for the different preloads show that in the range between FV=0.6 and 1.0 kN 
only a small increase of positioning accuracy due to less displacement can be reached. But 
the high additional costs in the construction of the wrist for preloads higher than 0.6 kN 
can’t be justified. For this reason, and for practical implementation, it is not meaningful to 
use forces greater than 0.6 kN. For preloads lower than 0.25 kN the position deviation 
increases dramatically and the system becomes statically indeterminate. The displacement 
of load case I with φ=36° is for every point smallest compared with load case I (φ=0°) and 
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from the arm of lever and is about 3.14 Nm. To avoid a displacement of the cap the preload 
FV has to be chosen great enough 
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Fig. 9. Load case I (left) and load case II (right) in two different directions. 
 
Load case I: 
The external load F is applied in a variable angle φ towards the vertical line. The maximum 
required preload for an offset of the beveled wheels (d) of 37.5 mm is about 1 kN. When d is 
increased to 42.5 mm, the required force is less than 0.63 kN. Thus, the required force 
decreases by about 37 % when the off-set of the beveled wheels is increased by about 21 %. 
By doubling the distance from 35 mm to 70 mm, the required preload force is reduced by 
90 %. The calculated critical angle of the load φ is 36°. 
 
Load case II: 
Calculations have shown that the influence of the substituted shear force F is negligible for 
this load case. Therefore only the over-all torque M is used for the analysis. FV is dependent 
upon the angle ς and the wheel distance e. The calculated maximum force for the timing belt 
is 0.28 kN. The calculated forces are all in a reasonable range compared to the technical 
elements that can be used for the construction. Consequently the concept can be realized in a 
physical system with standard bearings and materials. 

 
3.2 First Design and Finite Element Analysis 
On the basis of the analytic results described in section 3.1, the optimal solution for the free 
geometrical parameters can be defined and in a further step be designed in a CAD system. 
An impression of the parameter optimized wrist is given in figure 10: 
 

 

Fig. 10. CAD model based on the results of the analytical considerations. 

 

In a next step the CAD model is simulated numerically using Finite Element Method (FEM) 
in order to gain further information of the system’s behavior. Especially the elasticity of the 
different structures and the resulting interaction effects are of interest. The preload force and 
the orientation of the external force were varied systematically. The primary object is to get 
values for the displacement of the cap towards the global coordinate system. ABAQUS 
(Dassault Systèmes) is the used solver for the FEM. In order to reduce the computing time, 
the CAD model must be simplified while the fundamental behavior of the system should be 
modeled as accurately as possible. The following parts are taken into account for the Finite 
Element Analysis (FEA): The cap, the beveled wheels, the idler and the timing belt are 
modeled as deformable with the ABAQUS- element type ‘C3D8I’ (except beveled wheels, 
C3D8R). Analytical rigid elements are used for the connecting wheels and the driving shaft. 
All deformable parts are simulated with isotropic material except the timing belt. Due to the 
fact that the timing belt is composed of a steel cord with polyurethane backing and teethes, 
an anisotropic material parameter is used in the model. The angle φ of the external load 
takes the value of 0° and 36° which is identified in the analytic calculation as the most 
critical. Figure 11 illustrates the result of the FEA. 
 

 

Fig. 11. Stress distribution (von-Mises criterion) for load case II. 
 
The stresses, obtained by the FEA show a reasonable distribution. The displacement of the 
cap tested with high preload forces is minimal due to the FEA. For a preload of 0.6 kN the 
displacement for load case II is about 4.4·10-3 mm and for load case I 1.39·10-2 mm. 
Compared with a preload of 1 kN the displacement doesn’t highly decrease. For load case II 
the displacement takes the value of about 4.07·10-3 mm and for load case II 1.29·10-2 mm. 
These values for the different preloads show that in the range between FV=0.6 and 1.0 kN 
only a small increase of positioning accuracy due to less displacement can be reached. But 
the high additional costs in the construction of the wrist for preloads higher than 0.6 kN 
can’t be justified. For this reason, and for practical implementation, it is not meaningful to 
use forces greater than 0.6 kN. For preloads lower than 0.25 kN the position deviation 
increases dramatically and the system becomes statically indeterminate. The displacement 
of load case I with φ=36° is for every point smallest compared with load case I (φ=0°) and 

www.intechopen.com



Advances in Robot Manipulators246

 

load case II. Therefore, it appears that a preload between 0.25 kN and 0.6 kN would be most 
suitable. 

 
4. Functional Prototype 
 

Based on the positive results obtained by the different simulations, a functional prototype 
was developed. That was necessary mainly because different functions were integrated in 
the toothed belt, which is usually used in a different manner and not all material parameters 
were available so that estimated values were used. 
As the purpose of the prototype is to prove basic functionality of the design, a few 
simplifications are made. For the beveled wheels complete rolls are used and the cap is 
designed in a simple way for instance. Further-more, the construction allows the possibility 
to implement an s-beam force sensor (Lorenz K-25). Figure 12 shows two pictures of the 
assembled functional prototype with a one kilogram weight attached at the hand’s position. 
 

 

Fig. 12. Functional prototype. 
 
Multiple static and dynamic tests show that this configuration is very accurate and has a 
high stiffness for small preloads of about 300 N. Hereby the wrist is hand-held at the 
forearm tube and statically loaded by huge forces between 20-80 N or moved dynamically in 
all different directions. Even for very fast “hand actuated” motions, which were 
approximately five times of the maximum velocity of the robot’s arm, the assembly 
remained free from backlash. 

 
5. Optimization and Lightweight Design 
 

As a lightweight design is one of the main goals for the development of the new wrist, 
different numerical optimization methods were used. 

 
5.1 Topology Optimization 
Topology optimization is used for the determination of the basic layout of a new design. It 
involves the determination of features such as the number, location and shape of holes, and 
the connectivity of the domain. A new design is determined based upon the design space 
available, the loads, possible bearings, and materials of which the component is to be 
composed. Today topology optimization is very well theoretically studied (Bendsoe & 
Sigmund, 2003) and also a common tool in the industrial design process (Pedersen & 
Allinger, 2005). The designs, obtained using topology optimization are considered as design 
proposals. These topology optimized designs can often be rather different compared to 

 

designs obtained with a trial and error design process or designs obtained from 
improvements of existing layouts. The standard formulation in topology optimization is 
often to minimize the compliance corresponding to maximize the stiffness using a mass 
constraint for a given amount of material. That means that for a predefined amount of mass 
the structure with the highest stiffness is determined. Compliance optimization is based 
upon static structural analyses, modal analyses or even non-linear problems, such as models 
including contacts. A topology optimization scheme is basically an iterative process that 
integrates a finite element solver and an optimization module. Based on a design response 
supplied by the FE solver (e.g. strain energy), the topology optimization module modifies 
the FE model. 

 
5.2 Material Optimization  
Besides the topology optimization, it is necessary in addition to consider optimization 
strategies such as material optimization. Extreme lightweight design is possible only by 
combining both optimization strategies such as the topology optimization in combination 
with an optimal fiber layout. For calculation of laminates by use of the Finite Element 
Method (FEM), approaches are used that combine the properties of single plies to one 
virtual material by use of the ‘Classical Lamination Theory’ (CLT) (Johns, 1999). These 
established theories are valid for the elastic range. 
Several approaches for the determination of optimal fiber orientation have been presented in 
the past. (Luo & Gea, 1998) use an energy based method. (Setoodeh, 2005) describes an 
optimality criteria approach, while (Jansson, 2007) works with a generic algorithm. Inspired 
by nature (Kriechbaum 1994), (Hyer & Charette, 1987) place fibres in direction of first 
principal stress. In that context (Lederman, 2003) presents a method placing the fibers in the 
direction of the first main stress in the finite element. (Pedersen, 1991) showed, that a fiber 
orientation according to the first main strains leads to maximization of stiffness. Most of 
those approaches only work for one layer, and are reduced on two dimensional problems. 
The method used in that work was developed by (Albers et al., 2008b), focusing two main 
goals: Fast convergence, because the approach is intended to be used together with FEM, 
and, in a second step, combination with topology optimization. Application should be 
possible for 3D-geometries, and determination of a two layered laminate structure 
(orientation and thicknesses) had to be possible to take multi-axial load cases into account. 
The approach is based on a theory described by (Ledermann, 2003). Optimal fiber 
orientation is found, if it is equal to the orientation of the first main stress. To be able to take 
multi-axial load cases into account, the method creates two plies per finite element, with the 
second ply oriented in the direction of the second main stress. The relation of thickness of 
the two plies is proportional to the relation of the two main stresses. The orientation of the 
composite in space is defined by the surface created by the two directions of the main 
stresses. The third main stress is not taken into account, because 3-dimensional canvases are 
normally not used in real world applications. 
The method is implemented in an iterative procedure, starting with a finite element model 
with isotropic material. Thenceforward, the isotropic material model is replaced by an 
anisotropic one with the parameters of a combined two-layer composite. Stress and ply 
directions are updated in every iteration. In detail, the following steps are undertaken in 
each iteration: From the preceding finite element analysis, main stress directions and -
amounts are determined for each finite element. The procedure starts with the 
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load case II. Therefore, it appears that a preload between 0.25 kN and 0.6 kN would be most 
suitable. 

 
4. Functional Prototype 
 

Based on the positive results obtained by the different simulations, a functional prototype 
was developed. That was necessary mainly because different functions were integrated in 
the toothed belt, which is usually used in a different manner and not all material parameters 
were available so that estimated values were used. 
As the purpose of the prototype is to prove basic functionality of the design, a few 
simplifications are made. For the beveled wheels complete rolls are used and the cap is 
designed in a simple way for instance. Further-more, the construction allows the possibility 
to implement an s-beam force sensor (Lorenz K-25). Figure 12 shows two pictures of the 
assembled functional prototype with a one kilogram weight attached at the hand’s position. 
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Multiple static and dynamic tests show that this configuration is very accurate and has a 
high stiffness for small preloads of about 300 N. Hereby the wrist is hand-held at the 
forearm tube and statically loaded by huge forces between 20-80 N or moved dynamically in 
all different directions. Even for very fast “hand actuated” motions, which were 
approximately five times of the maximum velocity of the robot’s arm, the assembly 
remained free from backlash. 

 
5. Optimization and Lightweight Design 
 

As a lightweight design is one of the main goals for the development of the new wrist, 
different numerical optimization methods were used. 

 
5.1 Topology Optimization 
Topology optimization is used for the determination of the basic layout of a new design. It 
involves the determination of features such as the number, location and shape of holes, and 
the connectivity of the domain. A new design is determined based upon the design space 
available, the loads, possible bearings, and materials of which the component is to be 
composed. Today topology optimization is very well theoretically studied (Bendsoe & 
Sigmund, 2003) and also a common tool in the industrial design process (Pedersen & 
Allinger, 2005). The designs, obtained using topology optimization are considered as design 
proposals. These topology optimized designs can often be rather different compared to 

 

designs obtained with a trial and error design process or designs obtained from 
improvements of existing layouts. The standard formulation in topology optimization is 
often to minimize the compliance corresponding to maximize the stiffness using a mass 
constraint for a given amount of material. That means that for a predefined amount of mass 
the structure with the highest stiffness is determined. Compliance optimization is based 
upon static structural analyses, modal analyses or even non-linear problems, such as models 
including contacts. A topology optimization scheme is basically an iterative process that 
integrates a finite element solver and an optimization module. Based on a design response 
supplied by the FE solver (e.g. strain energy), the topology optimization module modifies 
the FE model. 

 
5.2 Material Optimization  
Besides the topology optimization, it is necessary in addition to consider optimization 
strategies such as material optimization. Extreme lightweight design is possible only by 
combining both optimization strategies such as the topology optimization in combination 
with an optimal fiber layout. For calculation of laminates by use of the Finite Element 
Method (FEM), approaches are used that combine the properties of single plies to one 
virtual material by use of the ‘Classical Lamination Theory’ (CLT) (Johns, 1999). These 
established theories are valid for the elastic range. 
Several approaches for the determination of optimal fiber orientation have been presented in 
the past. (Luo & Gea, 1998) use an energy based method. (Setoodeh, 2005) describes an 
optimality criteria approach, while (Jansson, 2007) works with a generic algorithm. Inspired 
by nature (Kriechbaum 1994), (Hyer & Charette, 1987) place fibres in direction of first 
principal stress. In that context (Lederman, 2003) presents a method placing the fibers in the 
direction of the first main stress in the finite element. (Pedersen, 1991) showed, that a fiber 
orientation according to the first main strains leads to maximization of stiffness. Most of 
those approaches only work for one layer, and are reduced on two dimensional problems. 
The method used in that work was developed by (Albers et al., 2008b), focusing two main 
goals: Fast convergence, because the approach is intended to be used together with FEM, 
and, in a second step, combination with topology optimization. Application should be 
possible for 3D-geometries, and determination of a two layered laminate structure 
(orientation and thicknesses) had to be possible to take multi-axial load cases into account. 
The approach is based on a theory described by (Ledermann, 2003). Optimal fiber 
orientation is found, if it is equal to the orientation of the first main stress. To be able to take 
multi-axial load cases into account, the method creates two plies per finite element, with the 
second ply oriented in the direction of the second main stress. The relation of thickness of 
the two plies is proportional to the relation of the two main stresses. The orientation of the 
composite in space is defined by the surface created by the two directions of the main 
stresses. The third main stress is not taken into account, because 3-dimensional canvases are 
normally not used in real world applications. 
The method is implemented in an iterative procedure, starting with a finite element model 
with isotropic material. Thenceforward, the isotropic material model is replaced by an 
anisotropic one with the parameters of a combined two-layer composite. Stress and ply 
directions are updated in every iteration. In detail, the following steps are undertaken in 
each iteration: From the preceding finite element analysis, main stress directions and -
amounts are determined for each finite element. The procedure starts with the 
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transformation of the direction vectors of main stresses from the element coordinate systems 
to the vector of the global system by use of the direction cosines. The cross product of the 
direction vectors of the two first main stresses is used to define the perpendicular to the later 
surface of lamina of the element. In the special case of the cross product being the zero-
vector, e.g. the uniaxial stress condition, a filter is used to determine the perpendicular out 
of the neighboring elements. By use of the given engineering constants E║, E┴, ┴║,  ┴┴ and 
G┴║ of the chosen fiber-matrix-combination, the orthotropic stiffness matrix [C] of the UD-
layers can be reduced to a transversal isotropic one as follows: 
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Now, the engineering constants mentioned above are introduced: 
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The angle  between the two layers is the angle between the two first main stresses. It can be 
obtained by use of the direction cosines. The volume share of the two layers is calculated as: 
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By use of the ‘Classical Lamination Theory’ (CLT), the combined stiffness matrix [Ccom] of 
the two-layer-lamina can now be calculated. First, the stiffness matrix of the smaller layer is 
transformed into the lamina coordinate system, defined by the direction of the first main 
stress. This is done by rotating the stiffness matrix of the layer [C]’ about : 
         TTCTC  '1

 (7) 

 
With [T] the following transformation matrix: 
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The combination of the two layers is done by use of the rules defined by the CLT. The 
iteration is finished by formatting and writing the new anisotropic stiffness matrices in the 
input deck for the FEA. Depending on the FE code used, the materials has to be filtered and 
clustered before a FEA can be performed, as some FE algorithms are limited in the number 
of materials allowed. Reduced convergence speed and accuracy of the approach may result. 

 
5.3 Model Setup 
For the topology and material optimization the complete system is disassembled and only 
the cap is used for the optimization. This simplification is necessary to avoid enormous 
computing time caused by a very fine mesh for the cap and a huge number of load cases. 
Cutting these parts free from the total system, calls for a realistic replacement of the 
interaction between the components. Hereby the interaction between the beveled wheels 
and cap is replaced by a connection at the corresponding nodes which allows a degree of 
freedom in the 3-axis direction. This simplification is possible because the appearing forces 
can only be compressive force or the cap lifts off the wheel surface. The timing belt is 
replaced by a load which is tangential to the cap and transferred to the structure by 5 points 
on each side of the cap. The preload used in place of the timing belt is 450 N. On one side of 
the cap an additional force is applied to the timing belt which is the result of an inertial relief 
and named Finertrel. The external load (F) is defined to 30 N and applied to the cap by a 
torsion arm, which is modeled as rigid element (RBE in MSC.Nastran), in a distance of 
100 mm in negative 3-coordinate-axis. The force vector can be reduced to three different 
directions because of the symmetry conditions can be defined for the optimization process. 
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transformation of the direction vectors of main stresses from the element coordinate systems 
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The angle  between the two layers is the angle between the two first main stresses. It can be 
obtained by use of the direction cosines. The volume share of the two layers is calculated as: 
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transformed into the lamina coordinate system, defined by the direction of the first main 
stress. This is done by rotating the stiffness matrix of the layer [C]’ about : 
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The combination of the two layers is done by use of the rules defined by the CLT. The 
iteration is finished by formatting and writing the new anisotropic stiffness matrices in the 
input deck for the FEA. Depending on the FE code used, the materials has to be filtered and 
clustered before a FEA can be performed, as some FE algorithms are limited in the number 
of materials allowed. Reduced convergence speed and accuracy of the approach may result. 

 
5.3 Model Setup 
For the topology and material optimization the complete system is disassembled and only 
the cap is used for the optimization. This simplification is necessary to avoid enormous 
computing time caused by a very fine mesh for the cap and a huge number of load cases. 
Cutting these parts free from the total system, calls for a realistic replacement of the 
interaction between the components. Hereby the interaction between the beveled wheels 
and cap is replaced by a connection at the corresponding nodes which allows a degree of 
freedom in the 3-axis direction. This simplification is possible because the appearing forces 
can only be compressive force or the cap lifts off the wheel surface. The timing belt is 
replaced by a load which is tangential to the cap and transferred to the structure by 5 points 
on each side of the cap. The preload used in place of the timing belt is 450 N. On one side of 
the cap an additional force is applied to the timing belt which is the result of an inertial relief 
and named Finertrel. The external load (F) is defined to 30 N and applied to the cap by a 
torsion arm, which is modeled as rigid element (RBE in MSC.Nastran), in a distance of 
100 mm in negative 3-coordinate-axis. The force vector can be reduced to three different 
directions because of the symmetry conditions can be defined for the optimization process. 
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The additional torque (M) represents 5 Nm and rotates about the global 3-coodrinate-axis. In 
figure 13 eight different load cases are illustrated.  
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Fig. 13. Load cases for the topology optimization. 
 
The first six load case combinations are set for three different rotational positions of the 
second DOF. The initial state is the neutral position and two other positions are realized by 
changing the direction and position of all forces on the cap as they would appear at a 
±30° rotation. From this it follows that 18+2=20 different configurations of the cap are set for 
the topology optimization. 

 
5.4 Results 
The result of the topology optimization as a basic design proposal is shown in figure 14. The 
complex topography in the center is a result of the stress caused by the torsional moment 
applied to the structure mainly by load case 4 (4.1, 4.2, 4.3). The direct connection to the 
bearing by the beveled wheels is visible clearly. The function of the center link is mainly to 
absorb the reaction forces applied to the cap by the high preload and the beveled wheels. 
The side links are important to reinforce the cap structure between the two points of force 

 

transmission of the timing belt. The shape of an arrowhead as a result of the two side links is 
highlighted on the right side in figure 14. 
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In figure 15 the principle stress for an anisotropic topology optimization is illustrated. The 
highlighted regions are areas with preferred orientated principle stress, which is important 
while using fiber reinforced materials. Furthermore the stress is uniaxial in these regions. A 
zoomed view (round clippings) clarifies the stress orientation. In these regions the fibers in 
the laminate can be orientated in the direction of the principle stress which on the one hand 
reduces the amount of used material and by that the weight of the cap and on the other 
hand it improves the stiffness and accuracy. Regions which are not highlighted have 
changing stress orientations and different stress states. In these areas laminates have to be 
stacked with different orientations to absorb the multiaxial stress. 
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Fig. 13. Load cases for the topology optimization. 
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Based on the optimization results a 3D-CAD model can be implemented as a first design 
proposal (see figure 16). In order to realize a lightweight design, the part is built up as an 
hollow shell. The advantage is that the material is located at the outer area which increases 
the bending stiffness. To reduce the comprehensive stress at the friction contact zone where 
the beveled wheels are crawling, a metal band is laminated into the fiber composite. This 
metal band also increases the stiffness. Furthermore compression proof foam can be 
integrated into the shell in areas with high pressure mainly introduced to the structure by 
high preloads. The complex suggestion for the center by the topology optimization is 
reduced to a thickened center link. To big holes in the structure reduce the weight. In 
figure 16 on the right side the arrowhead shape, which was suggested by the optimization, 
is visible. This shape allows a good distribution of forces within the structure.  
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Fig. 16. 3D-CAD model of a design proposal. 
 
Due to the two holes in the structure a new concept for the timing belt is required. Therefore 
two narrow belts instead of one are used to apply the preload to the cap. In figure 17 a 3D-
CAD model with a suggestion for the two timing belts is illustrated. This arrangement 
increases the support effect and results in a better positioning accuracy.  
 

 

Fig. 17. 3D-CAD model of a design proposal for the timing belt. 

 

6. Conclusion 
 

In this paper the development of a new concept for humanoid robot’s lightweight wrist is 
presented. Especially the different steps of the development process are described. Based on 
the basic ideas, different analyses and simulations are conducted. A functional prototype is 
presented which is a kind of proof of the concept. Due to the design proposal obtained by 
the topology optimization for a fiber composite, a lightweight design is implemented in the 
CAD model.  
The next step will be the integration of the drive units for the second degree of freedom. 
Here different solutions are possible, e.g. like bowden cables or a direct actuation in 
combination with harmonic drive gears. In order to achieve a further reduction of mass, 
composite materials may be used for some further of the structural components. The new 
wrist will be developed in the next months and is to be manufactured and assembled during 
the next year. 

 
7. References 
 

Albers A.; Brudniok S.; Ottnad J.; Sauter Ch.; Sedchaicharn K. (2006) Upper Body of a new 
Humanoid Robot – the Design of Armar III, Humanoids 06 - 2006 IEEE-RAS 
International Conference on Humanoid Robots, December 4 to 6, 2006 in Genova, Italy. 

Albers, A.; Deigendesch, T.; Meboldt, M. (2008a). Handling Complexity – A Methodological  
Approach Comprising Process and Knowledge Management, Proceedings of the 
TMCE 2008, 2008 TMCE International Symposium on Tools and Methods of Competitive 
Engineering, April 21-25, 2008, Izmir, Turkey. 

Albers, A.; Ottnad, J.; Weiler, W. (2008b). Integrated Topology and Fibre Optimization for 3-
Dimensional Composites, Proceedings of IMECE 2008, 2008 ASME International 
Mechanical Engineering Congress and Exposition, November 2-6, 2008, Boston, 
Massachusetts, USA. 

Albu-Schäffer, A.; Haddadin, S.; Ott, Ch.; Stemmer, A.; Wimböck, T.; Hirzinger, G. (2007). 
The DLR lightweight robot: design and control concepts for robots in human 
environments, Industrial Robot: An International Journal, Vol. 34 No. 5, 2007. 

Asfour, T. (2003). Sensomotorische Bewegungskoordination zur Handlungsausführung eines 
humanoiden Roboters, Dissertation Fakultät für Informatik, Universität Karlsruhe, 
2003. 

Beck, S.; Lehmann, A.; Lotz, Th.; Martin, J.; Keppler, R.; Mikut, R. (2003). Model-based 
adaptive control of a fluidic actuated robotic hand, Proc., GMA-Congress 2003, VDI-
Berichte 1756, S. 65-72; 2003. 

Bendsoe, M. & Sigmund, O. (2003). Topology Optimization – Theory, Methods, Application, 
Springer Verlag 2003. 

Brudniok, S. (2007). Dissertation - Methodische Entwicklung hochintegrierter 
mechatronischer Systeme am Beispiel eines humanoiden Roboters, 
Forschungsberichte des Instituts für Produktentwicklung, Band 26, Karlsruhe 2007, 
ISSN 1615-8113. 

Hyer, M. W. & Charette, R. F. (1987). Innovative design of composite structures: use of curvilinear 
fiber format to improve structural efficiency, Technical Report 87–5, University of 
Maryland, College Park, MD, USA, 1987. 

www.intechopen.com



Development of a New 2 DOF Lightweight Wrist for the Humanoid Robot ARMAR 253

 

Based on the optimization results a 3D-CAD model can be implemented as a first design 
proposal (see figure 16). In order to realize a lightweight design, the part is built up as an 
hollow shell. The advantage is that the material is located at the outer area which increases 
the bending stiffness. To reduce the comprehensive stress at the friction contact zone where 
the beveled wheels are crawling, a metal band is laminated into the fiber composite. This 
metal band also increases the stiffness. Furthermore compression proof foam can be 
integrated into the shell in areas with high pressure mainly introduced to the structure by 
high preloads. The complex suggestion for the center by the topology optimization is 
reduced to a thickened center link. To big holes in the structure reduce the weight. In 
figure 16 on the right side the arrowhead shape, which was suggested by the optimization, 
is visible. This shape allows a good distribution of forces within the structure.  
 

friction contact zone 
for the bevel wheels holes arrowhead shape  

Fig. 16. 3D-CAD model of a design proposal. 
 
Due to the two holes in the structure a new concept for the timing belt is required. Therefore 
two narrow belts instead of one are used to apply the preload to the cap. In figure 17 a 3D-
CAD model with a suggestion for the two timing belts is illustrated. This arrangement 
increases the support effect and results in a better positioning accuracy.  
 

 

Fig. 17. 3D-CAD model of a design proposal for the timing belt. 

 

6. Conclusion 
 

In this paper the development of a new concept for humanoid robot’s lightweight wrist is 
presented. Especially the different steps of the development process are described. Based on 
the basic ideas, different analyses and simulations are conducted. A functional prototype is 
presented which is a kind of proof of the concept. Due to the design proposal obtained by 
the topology optimization for a fiber composite, a lightweight design is implemented in the 
CAD model.  
The next step will be the integration of the drive units for the second degree of freedom. 
Here different solutions are possible, e.g. like bowden cables or a direct actuation in 
combination with harmonic drive gears. In order to achieve a further reduction of mass, 
composite materials may be used for some further of the structural components. The new 
wrist will be developed in the next months and is to be manufactured and assembled during 
the next year. 

 
7. References 
 

Albers A.; Brudniok S.; Ottnad J.; Sauter Ch.; Sedchaicharn K. (2006) Upper Body of a new 
Humanoid Robot – the Design of Armar III, Humanoids 06 - 2006 IEEE-RAS 
International Conference on Humanoid Robots, December 4 to 6, 2006 in Genova, Italy. 

Albers, A.; Deigendesch, T.; Meboldt, M. (2008a). Handling Complexity – A Methodological  
Approach Comprising Process and Knowledge Management, Proceedings of the 
TMCE 2008, 2008 TMCE International Symposium on Tools and Methods of Competitive 
Engineering, April 21-25, 2008, Izmir, Turkey. 

Albers, A.; Ottnad, J.; Weiler, W. (2008b). Integrated Topology and Fibre Optimization for 3-
Dimensional Composites, Proceedings of IMECE 2008, 2008 ASME International 
Mechanical Engineering Congress and Exposition, November 2-6, 2008, Boston, 
Massachusetts, USA. 

Albu-Schäffer, A.; Haddadin, S.; Ott, Ch.; Stemmer, A.; Wimböck, T.; Hirzinger, G. (2007). 
The DLR lightweight robot: design and control concepts for robots in human 
environments, Industrial Robot: An International Journal, Vol. 34 No. 5, 2007. 

Asfour, T. (2003). Sensomotorische Bewegungskoordination zur Handlungsausführung eines 
humanoiden Roboters, Dissertation Fakultät für Informatik, Universität Karlsruhe, 
2003. 

Beck, S.; Lehmann, A.; Lotz, Th.; Martin, J.; Keppler, R.; Mikut, R. (2003). Model-based 
adaptive control of a fluidic actuated robotic hand, Proc., GMA-Congress 2003, VDI-
Berichte 1756, S. 65-72; 2003. 

Bendsoe, M. & Sigmund, O. (2003). Topology Optimization – Theory, Methods, Application, 
Springer Verlag 2003. 

Brudniok, S. (2007). Dissertation - Methodische Entwicklung hochintegrierter 
mechatronischer Systeme am Beispiel eines humanoiden Roboters, 
Forschungsberichte des Instituts für Produktentwicklung, Band 26, Karlsruhe 2007, 
ISSN 1615-8113. 

Hyer, M. W. & Charette, R. F. (1987). Innovative design of composite structures: use of curvilinear 
fiber format to improve structural efficiency, Technical Report 87–5, University of 
Maryland, College Park, MD, USA, 1987. 

www.intechopen.com



Advances in Robot Manipulators254

 

Jansson, N. (2007). Optimization of hybrid thermoplastic composite structures using 
surrogate models and genetic algorithms. Composite Structures, Vol. 80 (2007) No. 
1, pp. 21-31. 

Jones, R. (1999). Mechanics of composite materials - 2. ed, Philadelphia: Taylor & Francis, 1999; 
ISBN 1-56032-712-X. 

Kaneko, K.; Kanehiro, F.; Kajita S.; Hirukawa, H.;Kawasaki, T.; Hirata, M.; Akachi, K.; 
Isozumi, T. (2004). Humanoid Robot HRP-2, Proc. IEEE Int. Conference on Robotics 
and Automation, pp. 1083-1090, 2004. 

Kaneko, K.; Harada, K.; Kanehiro, F.; Miyamori, G.; Akachi, K. (2008). Humanoid Robot 
HRP-3, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 
Acropolis Convention Center Nice, France, Sept, 22-26, 2008. 

Kriechbaum, R. (1994). Ein Verfahren zur Optimierung der Faserverläufe in Verbundwerkstoffen 
durch Minimierung der Schubspannung nach Vorbildern der Natur, FZKA 5406, 
Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany, 1994. 

Ledermann, M. (2003) Dissertation: Beiträge zur Optimierung von Faserverbunden nach dem 
Vorbild der Natur, Institut für Materialforschung, Forschungszentrum Karlsruhe; 
Wissenschaftliche Berichte FZKA 6779, ISSN 0947-8620. 2003. 

Luo J.H., Gea H.C. (1998) Optimal orientation of orthotropic materials using an energy 
based method, Structural Optimization, Vol. 15 (1998), No. 3/4, pp. 230-236. 

Park, I. W.; Kim, J. Y.; Lee, J.; Oh, J. H. (2005). Mechanical Design of Humanoid Robot 
Platform KHR-3 (KAIST Humanoid Robot – 3: HUBO), Proc. IEEE-RAS Int. 
Conference on Humanoid Robots, pp. 321-326, 2005. 

Pedersen, P. (1991). Optimal orientation of anisotropic materials, optimal distribution of 
anisotropic materials, optimal shape design with anisotropic materials, optimal 
design for a class of non-linear elasticity, Optimization of large structural systems; 
Proceedings of the NATO/DFG Advanced Study Institute (1991), Berchtesgaden, 
Germany. 

Pedersen, C.B.W. & Allinger, P. (2005) Recent Developments in the Commercial 
Implementation of Topology Optimization, TopoptSYMP2005 - IUTAM-Symposium, 
Copenhagen, Denmark, pp. 123-132, 2005. 

Rosheim, M. (1989). Robot wrist actuators, 1. Auflage, 1989 ISBN 0-471-61595-1. 
Schulz, S. (2003). Eine neue Adaptiv-Hand-Prothese auf der Basis flexibler Fluidaktoren, 

Dissertation, Fakultät für Maschinenbau, Universität Karlsruhe (TH), 2003. 
Schäfer, C. (2000). Entwurf eines anthropomorphen Roboterarms: Kinematik, Arbeitsraumanalyse, 

Softwaremodellierung, Dissertation Fakultät für Informatik, Universität Karlsruhe, 
2000. 

Setoodeh, S. (2005). Combined topology and fiber path design of composite layers using 
cellular automata, Structural and Multidisciplinary Optimization, Vol. 30 (2005), No. 6, 
pp. 413-421. 

Shadow. www.shadow.org.uk: The Shadow Robot Company. 
Wirhed, R. (2001). Sportanatomie und Bewegungslehre, Schattauer Verlag, 3. Auflage. 
 

www.intechopen.com



Advances in Robot Manipulators
Edited by Ernest Hall

ISBN 978-953-307-070-4
Hard cover, 678 pages
Publisher InTech
Published online 01, April, 2010
Published in print edition April, 2010

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

The purpose of this volume is to encourage and inspire the continual invention of robot manipulators for
science and the good of humanity. The concepts of artificial intelligence combined with the engineering and
technology of feedback control, have great potential for new, useful and exciting machines. The concept of
eclecticism for the design, development, simulation and implementation of a real time controller for an
intelligent, vision guided robots is now being explored. The dream of an eclectic perceptual, creative controller
that can select its own tasks and perform autonomous operations with reliability and dependability is starting to
evolve. We have not yet reached this stage but a careful study of the contents will start one on the exciting
journey that could lead to many inventions and successful solutions.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Albert Albers, Jens Ottnad and Christian Sander (2010). Development of a New 2 DOF Lightweight Wrist for
the Humanoid Robot ARMAR, Advances in Robot Manipulators, Ernest Hall (Ed.), ISBN: 978-953-307-070-4,
InTech, Available from: http://www.intechopen.com/books/advances-in-robot-manipulators/development-of-a-
new-2-dof-lightweight-wrist-for-the-humanoid-robot-armar


